Технология FDDI

Технология FDDI (Fiber Distributed Data Interface — распределенный интерфейс передачи данных по оптоволокну) — это первая технология локальных сетей, в которой в качестве среды передачи данных стал применяться волоконно-оптический кабель. Работы по созданию технологий и устройств локальных сетей, использующих волоконно-оптические каналы, начались в 80-е годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа X3T9.5 института ANSI разработала в период с 1986 по 1988 гг. начальные версии стандарта FDDI, который описывает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км.

Основные характеристики технологии FDDI

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой следующие цели:

q  повысить битовую скорость передачи данных до 100 Мбит/с;

q  повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода, включая повреждение кабеля, некорректную работу узла, концентратора, возникновение сильных помех на линии и т. п.;

q  максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец — это основное средство повышения отказоустойчивости в сети FDDI.

Узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В технологии FDDI для передачи световых сигналов по оптическим волокнам реализовано кодирование 4B/5B в сочетании с кодированием NRZI. Эта схема приводит к передаче по линии связи сигналов с тактовой частотой 125 МГц.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, этот режим назван сквозным, или транзитным. Вторичное кольцо в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется с вторичным (рис. 1), вновь образуя единое кольцо. Этот режим работы сети называется режимом свертывания колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному — в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Рис. 1. Реконфигурирование колец FDDI при отказе

В стандартах FDDI много внимания отводится различным процедурам, которые позволяют определить факт наличия отказа в сети, а затем произвести необходимое реконфигурирование. Технология FDDI дополняет механизмы обнаружения отказов технологии Token Ring механизмами реконфигурирования пути передачи данных в сети, основанными на наличии резервных связей, которые предоставляет второе кольцо.

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных. Метод доступа к этой среде очень близок методу доступа сетей Token Ring. Станции FDDI применяют алгоритм раннего освобождения токена, как и сети Token Ring 16 Мбит/с.

Отличия в методах доступа заключаются в следующем:

q  Время удержания токена в сети FDDI не является постоянной величиной, как в сети Token Ring. Это время зависит от загрузки кольца — при небольшой загрузке оно растет, а при перегрузках может снижаться до нуля. Однако эти изменениякасаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания токена остается фиксированным.

q  Механизм приоритетов кадров, принятый в Token Ring, в технологии FDDI отсутствует. Разработчики технологии решили, что деление трафика на 8 уровней приоритетов избыточно, достаточно разделить трафик на два класса — асинхронный и синхронный, последний из которых обслуживается всегда, даже при перегрузках кольца.

В остальном пересылка кадров между станциями кольца на уровне MAC полностью соответствует технологии Token Ring.

Рис. 2 иллюстрирует соответствие стека протоколов технологии FDDI семиуровневой модели OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDI используется протокол подуровня управления логическим каналом LLC.

Рис. 2. Стек протоколов технологии FDDI

Специфической особенностью технологии FDDI является уровень администрирования станции (Station Management, SMT). Именно уровень SMT выполняет функции по администрированию и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными SMT-кадрами для управления сетью.

Отказоустойчивость сетей FDDI обеспечивается протоколами и других уровней: с помощью физического уровня устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC — логические отказы сети, например, потерю нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

Отказоустойчивость технологии FDDI

Как уже отмечалось, для обеспечения отказоустойчивости в стандарте FDDI предусмотрено создание двух оптоволоконных колец — первичного и вторичного. В стандарте FDDI определены два типа конечных узлов — станции и концентраторы. Для подключения станций и концентраторов к сети может быть использован один из двух возможных способов.

q  Двойное подключение (Dual Attachment, DA) — одновременное подключение к первичному и вторичному кольцам. Станция и концентратор, подключенные таким способом, называются соответственно станцией двойного подключения (Dual Attachment Station, DAS) и концентратором двойного подключения (Dual Attachment Concentrator, DAC).

q  Одиночное подключение (Single Attachment, SA) — подключение только к первичному кольцу. Станция и концентратор, подключенные данным способом, называются соответственно станцией одиночного подключения (Single Attachment Station, SAS) и концентратором одиночного подключения (Single Attachment Concentrator, SAC).

Обычно, хотя и не обязательно, концентраторы имеют двойное подключение, а станции — одиночное, как показано на рис. 3. Чтобы устройства легче было правильно присоединять к сети, их разъемы маркируются. Разъемы типа А и В должны быть у устройств с двойным подключением; разъем М (Master) имеется у концентратора для одиночного подключения станции, у которой ответный разъем должен иметь тип S (Slave).

Рис. 3. Подключение узлов к кольцам FDDI

В случае однократного обрыва кабеля между устройствами с двойным подключением сеть FDDI сможет продолжить нормальную работу за счет автоматического реконфигурирования внутренних путей передачи кадров между портами концентратора (рис. 4).

Рис. 4. Реконфигурирование сети FDDI при обрыве

Двукратный обрыв кабеля приведет к образованию двух изолированных сетей FDDI. При обрыве кабеля, идущего к станции с одиночным подключением, она оказывается отрезанной от сети, а кольцо продолжает работать за счет реконфигурирования внутреннего пути в концентраторе — порт М, к которому была подключена данная станция, исключается из общего пути.

Для сохранения работоспособности сети при отключении питания в станции с двойным подключением (например, просто при ее выключении) она должна быть оснащена оптическим обходным переключателем, который создаст резервный путь для световых потоков.

И, наконец, станции DAS или концентраторы DAC можно подключать к двум портам М одного или двух концентраторов, создавая древовидную структуру с основными и резервными связями. По умолчанию порт В поддерживает основную связь, а порт А — резервную. Такая конфигурация называется двухпортовым подключением.

Отказоустойчивость поддерживается за счет постоянного слежения концентраторов и станций уровня SMT за временными интервалами циркуляции токена и кадров, а также за наличием физического соединения между соседними портами в сети. В сети FDDI нет выделенного активного монитора — все станции и концентраторы равноправны, и при обнаружении отклонений от нормы они начинают процесс повторной инициализации сети, а затем и ее реконфигурирование.

Реконфигурирование внутренних путей в концентраторах и сетевых адаптерах выполняется специальными оптическими переключателями, которые перенаправляют световой луч и имеют достаточно сложную конструкцию.

Максимальная общая длина кольца FDDI составляет 100 километров, максимальное число станций с двойным подключением в кольце — 500.

Технология FDDI разрабатывалась для ответственных участков сетей — магистральных соединений между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главным для разработчиков было обеспечить высокую скорость передачи данных, отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой. Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN.